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Abstract. We argue that different aspects of light-front QCD at the confined phase can be recovered by
the matrix quantum mechanics of D0-branes. The relevant matrix quantum mechanics is obtained from
dimensional reduction of pure Yang–Mills theory to dimension 0+1. The aspects of QCD dynamics which
are studied in correspondence with D0-branes are: (1) phenomenological inter-quark potentials, (2) the
whiteness of hadrons and (3) scattering amplitudes. In addition, some other issues such as the large-N
behavior, the gravity–gauge theory relation and also a possible justification for involving “non-commutative
coordinates” in the study of QCD bound states are discussed.

1 Introduction

The idea of a string theoretic description of gauge theories
is an old one [1,2]. Despite the years that passed since this
idea was launched, it is still actively developed in different
research works in theoretical physics [3–6]. On the other
hand, in the last years our understanding of string the-
ory has changed dramatically; a series of events which is
usually called the “second string revolution” [7]. The aim
of this is to formulate a unified string theory as a funda-
mental theory of the known interactions. One of the best
applicable tools in the above program are Dp-branes [8,9].
It is conjectured that Dp-branes are a perturbative rep-
resentation of non-perturbative (strongly coupled) string
theories.

It has been known for a long time that hadron–hadron
scattering processes have two different behaviors depend-
ing on the amount of momentum transfer [10,11]. At large
momentum transfer interactions appear as interactions
between the hadron constituents, partons or quarks, and
some qualitative similarities to electron–hadron scattering
emerge. At high energies and small momentum transfers
Regge trajectories are exchanged. Regge trajectories pro-
vide a motivation for the first string-based picture of the
strong interactions. However, the good fitting between the
Regge trajectories and the mass of strong bound states is
yet unexplained [1,12].

Deducing the apparently different observations
discussed above from a unified picture is the challenge
of present day theoretical physics, and it is tempting to
search the application of the recent string theoretic pro-
gresses in this area. In this way one may find the Dp-branes
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good tools whose dynamics may be taken as a proper ef-
fective theory for the bound states of quarks and QCD
strings (QCD electric fluxes). To use the string theory
tools for QCD strings one should replace the string the-
ory parameters by those of QCD in a proper way. The case
here is in the reverse direction compared to the early days
of string theory as the theory of the strong interaction, to
string theory as the theory of gravity.

To push further the above idea, in two works [13,14],
taking the dynamics of D0-branes as a toy model, the
potential and the scattering amplitude of two D0-branes
were calculated. It is found that the potential between
static D0-branes is a linear potential [15–18]. Also the po-
tential between two fast decaying D0-branes, which in the
extreme limit see each other instantaneously, has been cal-
culated and the general results are found to be in agree-
ment with phenomenology [15,16,18]. The scattering am-
plitude of two D0-branes was calculated in [14]. Based on
the results of [19], it is shown that the cross section obeys
the Regge pole expansion. Regge behavior has been used
some years ago to fit the hadron–hadron total cross sec-
tion data successfully [20,21] (see also [22–25] for some
more recent applications of this behavior).

Based on the results of [13,14] and after some further
discussions, we argue that different aspects of the light-
front formulation of QCD may be recovered by the ma-
trix quantum mechanics of D0-branes. In this paper, we
consider the matrix quantum mechanics resulting from di-
mensional reduction of d+ 1 dimensional pure U(N) YM
theory to dimension 0+1. The detailed procedure of con-
structing this matrix mechanics is presented in [26]. In
analogy with string theory (d = 9 or 25), we call D0-branes
the free-particles sector of the moduli space. We hope that
these kinds of studies will shed light on the possible new
relation between D-brane dynamics and gauge theories.
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Also we adjust our discussions so as to be in reasonable
contact with the known phenomenological aspects, though
an exact match with experiments should not be expected
at this level.

In Sect. 2 we review the distinguished role of light-
front coordinates for explaining the scaling behavior of
hadrons structure functions: the same behavior as is taken
as the consequence of point-like substructure in hadrons.
In Sect. 3 a short review of matrix quantum mechanics of
D0-branes is presented. In Sect. 4 the calculation of the
inter-D0-branes potential will be presented. A discussion
of the “whiteness” of D0-branes bound states is given in
Sect. 5. In Sect. 6 we deal with the problem of scattering.
Section 7 is devoted to a discussion. Three issues are dis-
cussed in Sect. 7: (1) the large-N limit, (2) quarks, gauge
theory and gravity and the relation between solutions,
and (3) non-commutativity. The discussion of the non-
commutativity concerns a possible justification for the ap-
pearance of “non-commutative” coordinates in the study
of “non-Abelian” bound states, such as bound states of
quarks and gluons.

2 QCD, light cone
and constituent quark picture

Before the gauge theoretic description of the strong in-
teraction, QCD, there was the constituent quark model
(CQM) for hadrons. According to CQM a meson is just
a quark–antiquark bound state and a baryon is a three-
quark one. The bound-state problem has been extensively
studied for years by the phenomenological inter-quark po-
tentials to calculate various low-energy quantities. The
agreement between calculated and observed quantities has
always been well enough to justify pursuing this approach
to study the hadron properties [15].

Presently QCD has been established to be the under-
lying theory for strong bound states and also it has been
understood that the QCD vacuum is a very complicated
medium. In low energy the coupling constant is large, so
quantum fluctuations are highly excited. This means that
basically the “sea” of quarks and gluons makes a consider-
able contribution to the properties of hadrons. Moreover,
phenomena like confinement are believed to be direct con-
sequences of the complex nature of the QCD vacuum. So
it seems that the hadron picture of QCD is not reconcil-
able with any few-body picture of the hadrons, like CQM
(see [27] for a good discussion on this point).

Experimentally, the substructure of hadrons is probed
in sufficiently large momentum transfer scatterings of a
fundamental particle, e.g. an electron, in the so-called
deep inelastic scattering (DIS) experiments. The existence
of a point-like substructure, a parton or quark, is taken
as the reason for the “scaling” behavior of the hadron
structure functions, i.e. the absence of any “scale” is the
consequence of point-like objects [10]. Along Bjorken’s ar-
gument, and as we shall recall below, this scaling behav-
ior has a simple interpretation from the light cone point
of view of the processes which are involved in DIS. The

Fig. 1. The lowest order process of a DIS experiment

story is the same for Feynman’s parton picture of a DIS
experiment and the light cone frame’s cousin, the infinite
momentum frame (IMF) [28]. By this simple interpreta-
tion of scaling in the light cone frame we hopefully have
a constituent picture for hadrons reconcilable with QCD,
and this is the reason for developing the light cone formu-
lation of QCD during the past years [27,29,30].

The unpolarized cross section of DIS in the lowest or-
der is given by1

k′
0
dσ
d3k′ =

2M
s − M2

α2

Q4 lµνW
µν , (2.1)

with

Wµν(p, q) =
1

4M

∑
σ

∫
d4y

2π
eiq·y〈p, σ|[Jµ(y), Jν(0)]|p, σ〉,

(2.2)

lµν = 2
(
kµk

′
ν + kνk

′
µ − 1

2
Q2ηµν

)
, q = k − k′,

q2 = −Q2 < 0. (2.3)

M and s are the mass of the nucleon and total energy
respectively. The momenta are specified in Fig. 1. Also,
we define the useful parameters

ν =
p · q
M

, x =
Q2

2Mν
, y =

2Mν

s − M2 . (2.4)

Note that the parameters x and y are dimensionless. In
the rest frame of the nucleon (target) we choose the z-axis
to be along the virtual photon momentum; then we have

p = (M, 0, 0, 0), q = (ν, 0, 0,−
√

ν2 +Q2). (2.5)

In the so-called Bjorken limit, Q2 → ∞, ν → ∞ and
x = fixed, we have q = (ν, 0, 0,−ν − Mx). Now the state-
ment of Bjorken scaling is as follows: Up to a kinematical
coefficient, the hadronic tensor Wµν depends only on the
parameter x and not on Q2. To see this, it is convenient
to use light cone variables a± = (a0 ±a3)/21/2 with scalar
product a · b = a+b− + a−b+ − aT · bT. Thus one writes

Wµν ∼ 1
4M

∫
dy−eiq

+y−
∫

dy+d2yTeiq
−y+

× 〈p|Jµ(y)Jν(0)|p〉. (2.6)

In the Bjorken limit we have
1 This discussion is borrowed from [11] and [31]
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q+ → −Mx/
√
2 = fixed,

q− = (2ν +Mx)/
√
2 →

√
2ν → ∞. (2.7)

In this limit the integrand of (2.6) contains the rapidly os-
cillating factor exp (iq−y+) which kills all contributions to
the integral except for those where the integrand is singu-
lar. Indeed the singularity of the integrand comes from the
current product at y+ ∼ 0. In addition, due to causality
the integrand vanishes for y2 = 2y+y− − y2

T < 0. So the
dominant part of the integral comes from y+ = yT = 0. It
explains the Bjorken scaling, i.e., the q− no longer exists
at y+ = 0. Now it is clear that the light-front coordinates
play a distinguished role in the understanding of the scal-
ing behavior in DIS experiments. The same result is also
correct for Feynman’s parton description of DIS and IMF,
the experimental realization of light cone frame [28].

3 Matrix quantum mechanics of D0-branes

According to string theory, Dp-branes are p dimensional
objects defined as (hyper)surfaces which can trap the ends
of strings [9] and therefore it is reasonable to take their
dynamics as a proper effective theory for the bound states
of quarks and QCD strings (QCD electric fluxes).

One of the most interesting aspects of D-brane dynam-
ics appears in their coincident limit. In the case of coin-
ciding N Dp-branes their dynamics is captured by a U(N)
YM theory dimensionally reduced to p + 1 dimensions of
the Dp-brane world volume [32,9,33]. In the case of D0-
branes, p = 0, the above dynamics reduces to quantum
mechanics of matrices, because time is the only parame-
ter in the world line. A detailed procedure of constructing
this matrix mechanics is presented in [26]. The bosonic
Lagrangian resulting from the pure YM is [34]2

L = m0Tr
(
1
2
DtX

2
i +

1
4(2πα′)2

[Xi, Xj ]2
)

, (3.1)

i, j = 1, ..., d, Dt = ∂t − i[a0, ],

where 1/(2πα′) and m0 = (lsgs)−1 are the string tension
and the mass of the D0-branes, respectively (ls = α′1/2
and gs are the string length and coupling, respectively).
For N D0-branes the X’s are in the adjoint representation
of U(N) and have the usual expansion Xi = xi(a)T(a),
(a) = 1, ..., N2 3.

The action (3.1) is invariant under the residual gauge
symmetry of unreduced YM theory. The transformations
are

X → X′ = UXU†,
a0 → a′

0 = Ua0U
† + iU∂tU

†, (3.2)

where U is an arbitrary time-dependent N × N unitary
matrix. Under these transformations one can check that

DtX → D′
tX

′ = U(DtX)U†,

DtDtX → D′
tD

′
tX

′ = U(DtDtX)U†. (3.3)
2 Here we take d arbitrary
3 To avoid confusion we put the group indices in () always

First let us search for D0-branes in the above La-
grangian: For each direction i there are N2 variables and
not N ones as one expects for N particles. However, there
is an ansatz for the equations of motion which restricts
the U(N) basis to its N dimensional Cartan subalgebra.
This ansatz causes the vanishing of the potential and one
finds the action of N free particles, namely

S =
∫

dt
N∑

(a)=1

1
2
m0ẋ

2
(a). (3.4)

In this case the U(N) symmetry is broken to U(1)N and
the interpretation of N remaining variables as the classi-
cal (relative) positions of N particles is meaningful. The
center of mass of D0-branes is represented by the trace of
the X matrices.

In the case of unbroken gauge symmetry the gauge
transformations mix the entries of the matrices and the
interpretation of the positions for the D0-branes remains
obscure [35]. Even in this case the center of mass is mean-
ingful and the ambiguity of the positions only remains for
the relative positions of the D0-branes. In the unbroken
phase the N2 − N non-Cartan elements of matrices have
a string interpretation; they govern the dynamics of the
low lying oscillations of strings stretched between the D0-
branes.

The dependences of the energy eigenvalues and the size
of the bound states are notable. By the scalings [34]

t → g−1/3
s t,

a0 → g1/3
s a0,

X → g1/3
s X, (3.5)

one finds the relevant energy and size scales to be

E ∼ g1/3
s /ls,

ld+2 = g1/3
s ls. (3.6)

The length scale ld+2 should be the fundamental length
scale of the covariant d+2 dimensional theory whose light
cone formulation is argued to be described by the action
(3.1) with the longitudinal momentum as m0 [19]. So it
is natural to assume in our case that ld+2 (for d = 2)
is the inverse of the 3 + 1 dimensional QCD mass scale,
denoted by ΛQCD

4. In the weak coupling limit gs → 0
(m0 � l−1

s ) one finds ld+2 
 ls which allows one to treat
the bound states of a finite number of D0-branes as point-
like objects in the transverse directions of the light cone
frame5, and consequently one finds m0 ·E ∼ 1/l2d+2, which
shows the invariance under Lorentz transformations of this
combination. As we will see in Sect. 6 the masses of the
intermediate states in the scattering amplitude appear as
l−1
d+2.

4 Due to the light-front interpretation, our ΛQCD differs from
[26]. There ls ∼ α′1/2 is taken as Λ−1

QCD
5 Because we admit the discrete longitudinal momentum,

m0, for finite N , we are dealing with discrete light cone quan-
tization (DLCQ) [36]. We do not emphasize this point later
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4 Known potentials

To calculate the effective potential between D0-branes one
should find the effective action around a classical config-
uration. This work can be done by integrating over the
quantum fluctuations in a path integral. For the diag-
onal classical configurations, classical representations of
D0-branes, the quantum fluctuations which must be in-
tegrated over are the off-diagonal entries. This work is
equivalent to integrating over the oscillations of the strings
stretched between D0-branes. Because here we deal with
a gauge theory, and our interest is the calculation around
the classical field configuration, to obtain the effective ac-
tion, it is convenient to use the background field method
[37].

To calculate the effective action we write (3.1) in d+1
space-time dimensions in the form (in the units 2πα′ = 1
and after the Wick rotation t → it and a0 → −ia0)

L = m0Tr
(
1
4
[Xµ, Xν ]2

)
, µ, ν = 0, 1, ..., d,

X0 = i∂t + a0, S =
∫

Ldt, (4.1)

where µ and ν are summed over by the Euclidean metric.
The one-loop effective action of (4.1) has been calculated
several times (e.g. see the Appendix of [38]) and the result
can be expressed as(∫

dt
)

V (Xcl
µ ) =

1
2
Tr log(P 2

λδµν − 2iFµν) − Tr log(P 2
λ),

(4.2)

with

Pµ∗ ≡ [Xcl
µ , ∗], Fµν ∗ ≡ [fµν , ∗], fµν ≡ [Xcl

µ , Xcl
ν ],

and

P 2
λ = −∂2

t +
d∑
i=1

P 2
i , (4.3)

with the backgrounds acl
0 = 0. The second term in (4.2) is

due to the ghosts associated with gauge symmetry.

4.1 Static potential

Here we calculate the potential between two D0-branes
at rest. The classical solution which represents two D0-
branes at a distance r can be introduced by

Xcl
1 =

1
2

(
r 0
0 −r

)
, Xcl

0 = i∂t

(
1 0
0 1

)
,

acl
0 = Xcl

i = 0, i = 2, ..., d. (4.4)

So one finds

P1 =
r

2
⊗ Σ3, P0 = i∂t ⊗ 14, Pi = 0, i = 2, ..., d,

(4.5)

where Σ3 is the adjoint representation of the third Pauli
matrix, Σ3∗ = [σ3, ∗]. The eigenvalues of Σ3 are 0, 0, ±2.

The operator P 2
λ is found to be

P 2
λ = −∂2

t ⊗ 14 +
r2

4
⊗ Σ2

3 , (4.6)

which is a harmonic oscillator operator whose frequency,
reintroducing α′, is ω ∼ r/α′. The one-loop effective ac-
tion can be computed6.

V (r) =
(

d − 1
2

)
Tr log(P 2

λ)

= −2
(

d − 1
2

)∫ ∞

0

ds
s

∫ ∞

−∞
dk0 e−s(k2

0+r2)

+ traces independent of r, (4.7)

where 2 is for the degeneracy in the eigenvalue 4 of Σ2
3 ,

and k0 is for the eigenvalues of the operator i∂t. In writing
the second line we have used

ln
(u

v

)
=
∫ ∞

0

ds
s
(e−sv − e−su).

The integrations can be performed and one finds

V (r) = −2
(

d − 1
2

)∫ ∞

0

ds
s

(π

s

)1/2
e−sr2

= 4π
(

d − 1
2

)
|r| − ∞ (independent of r). (4.8)

The linear potential is of phenomenological interest; see
e.g. [15,17,18]. Also it is the same as the one which is
consistent with spin–mass Regge trajectories [15–18]. By
restoring α′ the potential will be found to be

V (r) = 4π
(

d − 1
2

) |r|
2πα′ , (4.9)

which has the dimension length−1. By comparison with
the Regge model one can make an estimate for α′ [16,18].
The above potential can be used to describe an effective
theory for the relative dynamics of the D0-branes by

S =
∫

dt
(
1
2
m0

2
ṙ2 − 4π

(
d − 1
2

) |r|
2πα′

)
, (4.10)

which in the range of validity of the one-loop approxima-
tion, mentioned in the previous footnote, is expected to
be applicable. Also by this action one obtains the energy
scale as E ∼ α′−2/3m

−1/3
0 ∼ g

1/3
s /ls, as pointed in (3.6).

The above action describes the dynamics in the light cone
frame with the longitudinal momentum m0, and recalling
(3.6) we have p+p− ∼ m0E ∼ g

−2/3
s l−2

s ∼ l−2
d+2.

It is not hard to see that the two D0-brane interaction
potential is also true for every pair inside a bound states

6 The one-loop effective action is a good approximation for
ω � m0ṙ

2. It gives rgs � lsṙ
2 which for gs → 0 (m0 � l−1

s ) is
satisfied for large separations and low velocities
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of D0-branes. So the effective action for N D0-branes is
found to be

S =
∫

dt


1
2
m0

N∑
(a)=1

ṙ2
(a)

− 4π
(

d − 1
2

) N∑
(a)>(b)=1

|r(a) − r(b)|
2πα′


 . (4.11)

In a recent work [39], by taking the linear potential be-
tween quarks of a baryonic state in the transverse direc-
tions of the light cone frame, the structure functions are
obtained with good agreement with the observed ones.

It is useful to relate the parameter 1/α′ in the potential
with gauge theory parameters. To do this we need a string
theoretic description of gauge theory, but in the light cone
frame. The nearest formulation we know for this is light
cone–lattice gauge theory (LClgt) [40]. In LClgt one as-
sumes the time direction and one of the spatial directions,
say z, in the continuum limit. The light cone variables are
defined as the usual x± ∼ t ± z. Other spatial directions
naturally play the role of transverse directions of the light
cone frame, which are assumed to be on a lattice in LClgt.
Due to the existence of a continuous time x+, there exists
a Hamiltonian formulation [41] of the lattice gauge theory
[42]. The relation between the linear confinement potential
and the gauge–lattice parameters is given by [41,40]

V (r) ∼ g2
YM

a2 |r|, (4.12)

with a the lattice spacing parameter in the transverse di-
rections. Comparing this with (4.9) leads to

1
α′ ∼ g2

YM

a2 . (4.13)

4.2 Fast decaying D0-branes7

For two fast decaying D0-branes one can again calculate
the above potential. This work can be done by inserting for
example a Gaussian function for k0 into (4.7). This work
is equivalent to restricting the eigenvalues of the operator
i∂t. Keeping in mind that the eigenvalues of the opera-
tors (X, i∂t, ...) represent the information corresponding
to classical values of the D0-branes space-time positions8,
we find

V (r) = −2
(

d − 1
2

)∫ ∞

0

ds
s

×
∫ ∞

−∞
dk0

(
1
∆
e

−k2
0

∆2

)
e−s(k2

0+r2) (4.14)

= −2
√

π

(
d − 1
2

)∫ ∞

0

ds
s

e−sr2
√

s∆2 + 1
, (4.15)

7 This subsection was modified based on a crucial comment
by the referee of Eur Phys. J. C

8 The eigenvalues of i∂t here are different from their quantum
mechanical analogues, which due to the Schrödinger equation
are the energies

in which we assumed that the D0-branes live around time
zero. The last expression is infinite, but one can show that
the infinite part is r-independent. One takes

∂V (r)
∂(r2)

= 2
√

π

(
d − 1
2

)∫ ∞

0

dse−sr2
√

s∆2 + 1
, (4.16)

which is finite and so the infinity of V (r) is r-independent.
The last integral cannot be calculated exactly, though
a numerical comparison with phenomenology is possible.
The limit ∆ → 0 can be calculated exactly by recalling
the relation

lim
∆→0

(
1
∆
e−k2

0/∆
2
)
=

√
πδ(k0).

Inserting the δ-function in (4.14) one finds

V (r) ∼ −2
(

d − 1
2

)∫ ∞

0

ds
s

e−s(r2) ∼ ln r, (4.17)

the last result is obtained after extracting the r-indepen-
dent infinity. This result is already consistent with the
phenomenology of heavy quarks [18,16], of which we know
that their weak decay rates grow with (mass)5. In the
extreme limit ∆ → 0, in which the two D0-branes see each
other “instantaneously”, one can take them as two D(-1)-
branes (D-instantons). The dynamics of D(-1)-branes are
described by the action (4.1), but instead of taking X0
as i∂t one takes X0 as a matrix of which the eigenvalues
represent the “instants” at which the D(-1)-branes occur.
So the above logarithmic result also could be obtained in
the D(-1)-brane calculation by taking a classical solution:

Xcl
1 =

1
2

(
r 0
0 −r

)
, Xcl

0 =
(

t0 0
0 t0

)
,

acl
0 = Xcl

i = 0, i = 2, ..., d, (4.18)

which represents two D(-1)-branes appearing at time t0,
at distance r.

A comment is in order: from the phenomenological
point of view, it is known that in some cases potentials
like rξ, with ξ � 0.1, also have produced good results [18,
16]. This maybe can be included in our intermediate result
(4.14) or the logarithmic result by recalling the numerical
relation ln r � rη�0, which is valid for a range of r 9.

5 White states

To determine the color of an object its dynamics should
be studied in the presence of external fields. For a “white”
extended object, the center of mass (c.m.) moves as a free
particle in a uniform electric field. Now we want to specify
the color of the D0-branes bound states. As we will see, al-
though our formulation for the dynamics of D0-branes in
external YM fields seems incomplete, a reasonable state-
ment about “whiteness” of D0-branes bound states can be
made.

9 One can justify this by the relation ln r = limη→0∫
drr−1+η = limη→0 r

η/η
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5.1 D0-branes in YM background

In classical electrodynamics besides electromagnetic fields
produced by different distributions of charges and cur-
rents, we also study the dynamics of a charged particle
in regions of space where electromagnetic fields exist. A
simple question is: What are the problems arising when
one studies chromodynamics in this level?

The main problem arises when one introduces sources
and matches chromodynamics with the dynamics of col-
ored objects (for example a colored particle). In the case
of electrodynamics there is a simple relation. For example
the equation of motion of a charge particle with mass m0
and charge q is

m0ẍ = q(E + v × B). (5.1)

The concept of gauge invariance at this level is under-
stood as the invariance of the equations of motion under
gauge transformations, i.e. field strengths are invariant un-
der gauge transformations. Now, in the case of chromody-
namics the right-hand side is a matrix and transforms as
an object in the adjoint representation under gauge group
transformations:

E → E′ = UEU†, B → B′ = UBU†. (5.2)

Thus the problem mentioned arises. As is well known to
string theorists, now we have a good candidate for non-
commutative coordinates which are the coordinates of co-
incident D0-branes. First one may rewrite (5.1) for “ma-
trix” coordinates by

m0Ẍ = q(E + Ẋ × B), (5.3)

but it is not enough to have the correct behavior for the
first side under gauge transformations. Here the world-line
gauge symmetry (3.2) of the D0-brane dynamics helps us
to write the generalized Lorentz equation as10

m0DtDtX = q(E +DtX × B). (5.4)

By recalling the relation (3.3) one observes that both sides
have the same behavior under gauge transformations.
However, it seems that the picture is not complete yet.
First, it is not clear what the Lagrangian formulation is of
this problem. Second, the precise meaning of the position
dependences of the field strengths should be clarified (the
same question can be asked for U , the parameter of the
gauge transformation).

Now, the crucial observation is the decoupling of the
c.m. dynamics from the non-Abelian parts. This is because
of the trace nature of the U(1) and SU(N) parts. As we
mentioned earlier the c.m. degree of freedom is described
by the U(1) part of U(N) [32]. So the position and the

10 Here we drop the commutator potential in the action of the
D0-branes, without any loss of generality. Things may be easier
with the symmetrized version of the magnetic part written as
(1/2)(DtX × B − B ×DtX)

Fig. 2a,b. The net electric flux extracted from each quark is
equivalent in a baryon a and a meson b. The D0-brane–quark
correspondence suggests the string-like shape for fluxes inside
a baryon a

momentum of the c.m. can be obtained by a simple trace
[35]:

xc.m. ≡ 1
N
TrX, pc.m. ≡ TrP . (5.5)

To investigate the kind and amount of the charge of an
object its dynamics should be studied in the absence of
a magnetic field (B = 0) and (for extended objects) in a
uniform electric field (E(x) = E0). So the c.m. equation
of motion is

m0ẍc.m. = qE(1)0, (5.6)

where the subscript (1) tells us that the corresponding
electric field comes from the U(1) part of U(N). It is un-
derstood that the dynamics of the c.m. will not be affected
by the non-Abelian part of gauge group. This means that
the c.m. is white with respect to SU(N). This behavior of
D0-brane bound states is the same as that of hadrons. This
means that each D0-brane feels the net effect of the other
D0-branes as the white complement of its color. In other
words, the field fluxes extracted from one D0-brane to the
other ones are the same as the flux between a color and an
anti-color, see Fig. 2. As we have shown in Sect. 4, there
is a linear potential between each two static D0-branes,
which is consistent with this flux-string picture. Also, the
number of D0-branes in the bound state, N , equals that
of the baryons. As we mentioned before, recently [39] the
linear potential between the constituents of baryons, in
the transverse directions of the light cone frame, has been
used successfully to obtain the structure functions.

As a final note of this part, we recall that the dynamics
presented by (5.1) can be taken as for a massless particle
in the transverse directions in the light cone frame with
longitudinal momentum, p+ ≡ m0. The fields E and B
are electromagnetic fields in the transverse directions. We
present the derivation of this in the Appendix.

6 Scattering amplitude

As a consequence of asymptotic freedom, in a sudden col-
lision process quarks or partons are assumed to be free.
So the probe, an electron or another quark, only interacts
with the hadron constituents instead of the hadron as a
whole [10,11]. It is the same mechanism as which results
in a scaling behavior in the hadron structure functions.

Keeping the above in mind it is reasonable to calcu-
late the scattering amplitude between two individual D0-
branes, to obtain an impression of the behavior of the
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scattering amplitude of two hadrons of which D0-branes
are assumed as their quarks. Also it is natural to assume
that this result is valid for the high energy elastic regime
of hadron collisions.

Here we use the result of [19]. In [19] it is shown that
the quantum travelling of D0-branes can be understood by
the field theory of Feynman graphs and the corresponding
amplitudes in the light cone frame. In the following we
review this approach to calculate the amplitude.

We concentrate on the limit α′ → 0. In this limit, in
order to have a finite energy one has

[Xi, Xj ] = 0, ∀ i, j, (6.1)

and consequently the potential term in the action van-
ishes. So D0-branes do not interact and the “classical ac-
tion” reduces to the action ofN free particles. We take this
classical action also in the quantum case; it is equivalent
to the assumption that two quarks in two spatially well
separated hadrons do not interact with each other. Since
hadrons are white one can rely on this assumption. How-
ever, the above observation fails when D0-branes come
to each other. When two D0-branes come very near each
other, two eigenvalues of the Xi matrices will be equal
and the corresponding off-diagonal elements can get non-
zero values. This is the same story as gauge symmetry en-
hancement. The fluctuations of these off-diagonal elements
are responsible for the interaction between D0-branes in
bound states.

In the coincident limit the dynamics is complicated.
The relative matrix position may be taken as

X =
(

r/2 Y
Y ∗ −r/2

)
, (6.2)

where Y ∗ is the complex conjugate of Y . By inserting this
matrix into the Lagrangian one obtains

S =
∫

dt
1
2

(
(2m0)Ẋ

2
c.m. +m0Ẏ · Ẏ

∗ − m0

4
1

4(2πα′)2

(1 − cos2 θ)r
2
Y · Y ∗ +

m0

2
ṙ2 +O(Y 3)

)
, (6.3)

with Xc.m. the center of mass and θ the angle between r
and the complex vector Y . As is apparent in the α′ → 0
limit, which is the case of our interest, the r element does
not take large values and have a small range of variation.
In the high-tension approximation of strings (α′ → 0), one
can take the separation of the D0-branes to be a constant
of order r ∼ g

1/3
s ls. As has been noted in Sect. 3, this

length is the typical size of the D0-brane bound states. So

S =
∫

dt
(
1
2
(2m0)Ẋ

2
c.m. +

1
2
m0Ẏ⊥ · Ẏ ∗

⊥

−1
2
m0

k2r2

α′2 Y⊥ · Y ∗
⊥ +

1
2
m0

2
ṙ + · · ·

)
, (6.4)

where in the above k is a numerical factor depending on
α′ and gs, and Y⊥ is the part of the Y perpendicular to
the relative distance r. The parallel part of Y behaves as

Fig. 3a,b. A typical tree path of D0-branes

a free part. In d+ 1 dimensions of space-time the dimen-
sion of Y⊥ is d−1, which shows that we have encountered
2 × (d − 1) harmonic oscillators, because Y is a complex
variable. This is the same number of harmonic oscillators
as appears in one-loop calculations (Sect. 4). These har-
monic oscillators correspond to vibrations of (oriented)
open strings stretched between D0-branes. In the follow-
ing we ignore the radial momentum and even the angular
momentum by dropping the term m0ṙ

2 and set r = r0 for
simplicity11.

For two D0-branes we take the probability amplitude
represented by a path integral as

〈x3, x4; tf |x1, x2; ti〉 =
∫

e−S . (6.5)

Based on the previous discussion, in the α′ → 0 limit for
the graph (see Fig. 3) we decompose the path-integral as
follows12:

〈x3, x4; tf |x1, x2; ti〉
=
[∫

e−S
]
α′→0

=
∫ tf

ti

dT1dT2

∫ ∞

−∞
dX1dX2

×(Km0(X1, T1;x1, ti)Km0(X1, T1;x2, ti))
×(K2m0(X2, T2;X1, T1)
×Koscillator(Y⊥ = 0, T2;Y⊥ = 0, T1))
×(Km0(x3, tf ;X2, T2)Km0(x4, tf ;X2, T2)), (6.6)

where Km(y2, t2; y1, t1) is the non-relativistic propagator
of a free particle with mass m between (y1, t1) and (y2, t2)
and Koscillator(Y⊥ = 0, T2;Y⊥ = 0, T1) is the harmonic os-
cillator propagator.

∫
dT1dT2dX1dX2 is for a summation

over different “joining-splitting” times and points. We use
in d dimensions the representations

Km(y2, t2; y1, t1)
11 Setting r = r0 may be justified by a mean value problem
in integrations over constant backgrounds in the path integral
as

∫
rd−1dr

∫
DY DY ∗e−S[r,Y,Y ∗] ∼ ∫

DY DY ∗e−S[r0,Y,Y ∗]

12 Here similar to field theory we have dropped the discon-
nected graphs
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= θ(t2 − t1)
1

(2π)d

∫
ddpeip·(y2−y1)− ip2(t2−t1)

2m ,

Koscillator(Y⊥ = 0, T2;Y⊥ = 0, T1)

= θ(T2 − T1)
(

m0ω

2πi sin[ω(T2 − T1)]

)d−1

,

where θ(t2 − t1) is the step function and ω is the harmonic
oscillator frequency, ω ∼ kr0/α

′ ∼ kg
1/3
s /ls. Because of

the complex nature of Y⊥ the power for the harmonic
propagator is 2 × (d − 1)/2.

All the above results can be translated into the mo-
mentum space (Ek = p2

k/(2m0) with k = 1, 2, 3, 4):

〈p3, p4; tf |p1, p2; ti〉 ∼ ei(E3+E4)tf−i(E1+E2)ti

×
∫ 4∏

a=1

dxaei(p1x1+p2x2−p3x3−p4x4)

×〈x3, x4; tf |x1, x2; ti〉. (6.7)

This representation is useful for calculating the cross sec-
tion. The integrals can be performed and we find

〈p3, p4; tf |p1, p2; ti〉

∼ δ(d)(p1 + p2 − p3 − p4)
∫ tf

ti

dT1dT2θ(T2 − T1)

× exp
(−i(p2

1 + p2
2)T1

2m0

)
exp

(−iq2(T2 − T1)
4m0

)

× exp
(
i(p2

3 + p2
4)T2

2m0

)
×Koscillator(Y⊥ = 0, T2;Y⊥ = 0, T1), (6.8)

where q = p1 + p2 = p3 + p4.
To have a real scattering process let us assume

ti → −∞, tf → ∞.

We put T ≡ T2 −T1 which has the range 0 ≤ T ≤ ∞. The
integrals yield

〈p3, p4;∞|p1, p2;−∞〉
∼ δ(d)(p1 + p2 − p3 − p4)

×δ

(
p2
1

2m0
+

p2
2

2m0
− p2

3

2m0
− p2

4

2m0

)
∫ ∞

0
dT e(−iT )/(4m0)(q2−2(p2

1+p
2
2))
(

m0ω

sin(ωT )

)d−1

. (6.9)

Recalling the energy-momentum relation in the light cone
gauge [19],

2(p2
1 + p2

2) − q2 = 2(2m0)
(

p2
1 + p2

2

2m0

)
− q2

= 2q+q− − q2 = qµq
µ ≡ q2

µ,

we find

〈p3, p4, E3, E4;∞|p1, p2, E1, E2;−∞〉
∼ δ(d)(p1 + p2 − p3 − p4)δ(E1 + E2 − E3 − E4)∫ ∞

0
dT e(−q

2
µ/(4m0))T

(
m0ω

sin(ωT )

)d−1

. (6.10)

We perform a cut-off for T for small values as 0 < ε ≤
T ≤ ∞, with ε small13. By changing the integral variables,
e−2ωT = η, we have

〈pµ3 , pµ4 ;∞|pµ1 , pµ2 ;−∞〉
∼ δ(d)(p1 + p2 − p3 − p4)δ(p−

1 + p−
2 − p−

3 − p−
4 )

× (m0ω)d−1

2ω

∫ x

0
dηη(−q2µ/(8m0ω))+(d−3)/2(1 − η)−d+1

∼ δ(d)(p1 + p2 − p3 − p4)δ(p−
1 + p−

2 − p−
3 − p−

4 )

× (m0ω)d−1

2ω
Bx

(
−q2

µ

8m0ω
+

d − 1
2

,−d+ 2

)
, (6.11)

where 1 ∼ x = e−2ωε and Bx is the incomplete Beta func-
tion. The longitudinal momentum conservation trivially is
satisfied. Furthermore, because of the conservation of this
momentum we do not expect so-called t-channel processes
here.

6.1 Polology

Equivalently one may use the other representation of
Koscillator as

Koscillator(Y⊥ = 0, T2;Y⊥ = 0, T1)

=
∑
n

〈0|n〉〈n|0〉e−iEn(T2−T1), (6.12)

with the En’s as the known Hoscillator eigenvalues. In this
representation one finds the pole expansion [19]:

〈pµ3 , pµ4 ;∞|pµ1 , pµ2 ;−∞〉
∼ δ(d)(p1 + p2 − p3 − p4)δ(p−

1 + p−
2 − p−

3 − p−
4 )

× lim
ε→0+

∑
n

Cn
i4m0

qµqµ − M2
n + iε

. (6.13)

This pole expansion also can be derived by extracting
the poles of the amplitude (6.11) with the condition

−q2
µ

8m0ω
+

d − 1
2

= −n, (6.14)

with n being a positive integer. Hence for the mass of the
intermediate bound states we obtain

M2
n =

8k
(
n+

d − 1
2

)
(g1/3

s ls)2
. (6.15)

We recall that the combination g
1/3
s ls is ld+2, the funda-

mental length of d + 2 dimensional theory (Sect. 3 and
[19]). The Regge pole expansion of (6.11)–(6.15) is the
phenomenological promising feature of this amplitude [20–
25].
13 This cut-off is for extracting the contribution of graphs
with a four-legs vertex, as λφ4. From the time-energy uncer-
tainty relation, we learn that these graphs are generated by
super-heavy intermediate states



A.H. Fatollahi: D0-branes as light-front confined quarks 757

7 Discussion

In this section we discuss some relevant issues: (1) the
large-N limit, (2) quark, gauge theory and gravity and
the relations between the solutions, and also (3) non com-
mutativity.

7.1 Large N

Baryons show special properties in the large-N limit of
gauge theories [43].

(1) Their masses grow linearly with N .
(2) Their sizes do not depend on N , so their density goes

to infinity at large N .
(3) The baryon–baryon force grows proportionally to N .

These properties mainly are extracted from a Hamil-
tonian formulation for the baryons as a bound-state of
N quarks. Based on the approximation to approach the
N -body problem (the Hartree approximation), the above
properties can be justified for baryons at large N .

Here we try to work out the Hamiltonian formulation,
and then the above mentioned properties are followed by
the same reasoning as of [43]14.

In Sect. 4 the effective theory for D0-branes was found
to be

S =
∫

dt


1
2
m0

N∑
(a)=1

ṙ2
(a)

− 4π
(

d − 1
2

) N∑
(a)>(b)=1

|r(a) − r(b)|
2πα′


 . (7.1)

Also we have found the relation between the α′ parameter
and the coupling constant of gauge theory by comparing
it to LClgt, namely 1/α′ ∼ g2

YM/a2 where a is the lattice
spacing parameter. It is known that it is more convenient
to replace the coupling constant by gYM/N1/2 at large N
[43]. So the action in terms of the new parameters is

S =
∫

dt


1
2
m0

N∑
(a)=1

ṙ2
(a) (7.2)

− 4π
(

d − 1
2

)
g2
YM

a2

1
N

N∑
(a),(b)=1

|r(a) − r(b)|

 ,

and the associated Hamiltonian is the same as used in
[43] except for the potential term, which is a Coulomb
one there.

Here we just check the mass of baryons at large N . The
kinetic term of c.m., P 2/(Nm0), grows with N , and the

14 Because we have considered D0-branes in the light cone
frame, for p+ = m0 � l−1

s , the heavy quark theory of [43]
is a good approximation for the transverse dynamics of the
D0-branes

net potential for each D0-brane takes a factor (1/2)N(N−
1) due to pair interactions. So the potential term at large
N grows like

1
2
N(N − 1)

g2
YM

N
∼ N. (7.3)

We find as a result that the energy grows as E ∼ N at
large N . From the point of view of the light cone frame
the energy is P−. The total longitudinal momentum of
this bound state is P+ = Np+, where p+ = m0 is the
longitudinal momentum of one D0-brane. Consequently,
the invariant mass M is

M2 = 2P+P− − P 2 ∼ N2 ⇒ M ∼ N. (7.4)

7.2 Quarks, gauge theory and Schwartzschild solutions
of gravity

Dp-branes are p dimensional Schwartzschild solutions of
low energy effective field theories of string theories15. So
any proposal for equivalence between them and quarks,
or at least between their dynamics and quarks dynamics,
may need justification at first. Here we recall some string
theoretic related issues briefly, and also try to present a
possible non-string theoretic related feature.

As mentioned, D-branes are gravity solutions. On the
other hand, it is known that the dynamics of these ob-
jects is captured by a gauge theory. It is one of the closest
connections between gauge theories and gravity which has
been revealed by string theory. Based on this relation be-
tween the dynamics of an extended object and a gauge
theory, many studies have been done to develop an un-
derstanding of the dynamics of gauge theory. One of the
recent steps forward in this area is the adS/CFT corre-
spondence [6], to relate gauge theory dynamics at large
’t Hooft coupling (λ = g2

YMN) to gravity in the anti-de
Sitter background.

The relation between gauge theory and gravity is also
studied at the level of the equations of motion. Both grav-
ity and non-Abelian gauge theories, though in different or-
ders, have non-linear equations of motion. It has been dis-
covered that both pure gauge theories and gauge theories
with matter have Schwartzschild-like solutions [44–47]. By
Schwartzschild-like we mean the similarity between “con-
nections” in gauge theories (known as gauge fields Aµ

(a))
and gravity (known as connection coefficients Γα

βγ). In the
case of SU(2) gauge theory with massless scalar matter
fields the solution is found to be [45]

A
(a)
i = ε(a)ij

rj

gYMr2 [1 − K(r)],

A
(a)
0 =

r(a)

gYMr2 J(r),

φ(a) =
r(a)

gYMr2H(r), (7.5)

15 In superstring theories, they are charged solutions under a
p+ 1-form field
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with

K(r) =
Cr

1 − Cr
, J(r) =

B

1 − Cr
,

H(r) =
A

1 − Cr
, (7.6)

with A2 − B2 = 1. The gauge field behavior is compa-
rable with the connection coefficients in a Schwartzschild
solution:

Γ t
rt =

K

2r
1

r − K
, Γ r

rr = −K

2r
1

r − K
, (7.7)

with K = 2GM . Here we just review some properties of
the solution (7.5) [45]. First, both the gauge and scalar
fields are singular at the radius r0 = C−1. Further, by cal-
culating electric and magnetic fields one sees that both are
singular at r0. Therefore a particle which carries an SU(2)
charge becomes confined if it enters the region r < r0.
The singularity of the field strengths at r0 here is differ-
ent from that of the gravitational Schwartzschild solution,
which can be removed by a suitable choice of coordinates.
Based on this picture of confinement of a charge in the re-
gion r < r0, a model for the confinement of gauge theories
has been presented in [47].

Also the solution has a monopole magnetic charge.
This can be seen from the generalized ’t Hooft field
strength:

Fµν = ∂µ(φ̂(a)W (a)
ν ) − ∂ν(φ̂(a)W (a)

µ )

− 1
gYM

ε(a)(b)(c)φ̂(a)(∂µφ̂(b))(∂ν φ̂(c)), (7.8)

with φ̂(a) ≡ φ(a)(φ(b)φ(b))−1/2. Hence, for the magnetic
field we find

Bi =
1
2
εijkFij = − ri

gYMr3 , (7.9)

which is the magnetic field of a point monopole with
charge −4π/gYM. One can also find the electric field:

Ei = −F0i =
ri

gYMr

d
dr

J(r)
r

=
B(2Cr − 1)ri

gYMr3(1 − Cr)2
, (7.10)

which at r → ∞ does not show the behavior of Prasad–
Sommerfield’s solution (1/r2), and the interpretation of a
net electric charge near the origin is impossible. So this
solution seems more like a magnetic monopole, and its
relation to a “quark” (a source of an electric field) is out of
reach; but here the idea of Mantonen–Olive duality, which
changes the role of solitonic solutions for the fundamental
objects seems relevant.

7.3 Why non-commutativity?

One of the most interesting aspects of D-branes is the non-
commutativity of their relative coordinates. If the model

Table 1. Non-commutative coordinates in the study of bound
states of quarks and gluons

Field Space-time Theory
coordinate

Photon Aµ Xµ electrodynamics (and QED)
Fermion ψ θ, θ̄ supersymmetric
Gluon Aµ

(a) Xµ
(a) chromodymamics (and QCD)

of this paper has some relation with nature, the ques-
tion will be raised of a possible justification for this non-
commutativity. To resolve this question one may consider
the following prescription: The structure of space-time has
to be in correspondence and in consistence with the prop-
agation of fields. In this way one finds the space-time co-
ordinates as a 4-vector Xµ which behaves like an electro-
magnetic field 4-vector Aµ (spin 1) under boost transfor-
mations. This is just the same idea as in special relativity:
to change the concept of space-time to be consistent with
the Maxwell equations.

Also in this way supersymmetry is a natural contin-
uation of the special relativity program: adding the spin
1/2 sector to the coordinates of space-time, as the rep-
resentative of the fermions of nature. This leads one to
the space-time formulation of the supersymmetric theo-
ries, and in the same way fermions are introduced into
the bosonic string theory.

Now, what may be modified if nature has non-Abelian
(non-commutative) gauge fields? In the present view of
nature non-Abelian gauge fields cannot make spatially
long coherent states; they are confined or too heavy. But
the picture may be changed inside a hadron. In fact, re-
cent developments of string theories voice this change and
it is understood that non-commutative coordinates and
non-Abelian gauge fields are two sides of one coin. As we
discussed, the interaction between D-branes is the result
of path integrations over fluctuations of the non-commu-
tative parts of coordinates. This means that in this pic-
ture “non-commutative” fluctuations of space-time are the
source of “non-Abelian” interactions. This picture may
justify involving the non-commutative coordinates in the
study of bound states of quarks and gluons. One may sum-
marize this idea as in Table 1.
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discussions on scattering amplitudes. M.M. Sheikh-Jabbari’s
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nally I am grateful to the referee of Eur. Phys. J. C for his/her
crucial comments.

A Particle electrodynamics
in light cone frame

We just follow the steps of [30] in going to the light cone
frame. The classical action is
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S = −m

∫ 2

1
dτ

√
ẋ2 + q

∫
Aµẋ

µdτ, (A.1)

with the momentum

pµ ≡ − ∂L

∂ẋµ
= m

ẋµ√
ẋ2

− qAµ. (A.2)

Consequently one finds the constraints for the momenta
and canonical Hamiltonian

(pµ + qAµ)(pµ + qAµ) = m2, (A.3)
Hc = −pµẋ

µ − L ≡ 0. (A.4)

The total Hamiltonian will be found to be

Ht = λ((pµ + qAµ)2 − m2), (A.5)

where λ is a Lagrange multiplier, and we have the canoni-
cal Poisson bracket {xµ, pν} = −ηµν . So one finds that the
dynamics has gauge symmetry (reparameterization invari-
ance), and to find the Lagrange multiplier one should fix
the gauge by the condition χ(x; τ) ≡ 0. Preserving gauge
fixing in time gives

χ̇ = 0 =
∂χ

∂τ
+ {χ,Ht}, (A.6)

which gives

λ = −{χ, θ}−1 ∂χ

∂τ
, θ ≡ (pµ + qAµ)2 − m2. (A.7)

The light cone gauge fixing is χ = τ − x+ = 0, and also
by adding the gauge fixing for the gauge field by A+ = 0
[29], one finds for the momentum conjugate of the time
(x+), i.e. the Hamiltonian:

H = p− =
(p + qA)2

2p+ − qA−, (A.8)

where we have assumed m = 0. By taking p+ as the New-
tonian mass m0 in the transverse directions and A− as
A0, one gets the Lorentz equation of motion (5.1) for this
Hamiltonian.
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